Производственное освещение. Классификация производственного освещения. Искусственное освещение и его классификация Искусственное освещение по функциональному назначению

01.07.2020

Производственное освещение - это такая система естественно­го и искусственного освещения, которая позволяет работающим нормально осуществлять определенный технологический процесс.

В производственных условиях используется три вида освещения: естественное (источником света является солнце), искусственное (за счет искусственных источников света) и совмещенное (одновременное сочетание естественного и искусственного освещения).

Естественное освещение создается природными источниками света – прямыми солнечными лучами и диффузным светом небосвода (от солнечных лучей рассеянных атмосферой), проникающим через световые проемы в наружных ограждающих конструкциях. Освещенность, создаваемая естественным дневным светом, изменяется в чрезвычайно широких пределах, что обусловлено временем дня, сезоном года, наличием облачности или осадков, а также географическим расположением местности.

Поэтому естественное освещение нельзя характеризовать абсолютной величиной освещенности. Основным показателем освещенности является коэффициент естественной освещенности.

Коэффициент естественной освещенности (КЕО) – это отношение естественной освещенности, создаваемой в некоторой точке внутри помещения естественным светом небосвода, к одновременно измеренному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода и выражается в процентах:

КЕО = (Е ВН / Е НАР)100% . (8.9)

где Е ВН и Е НАР - соответственно естественная освещенность внутри помещения и снаружи здания.

Для создания естественной освещенности в зданиях служат окна, а также световые проемы и фонари на крыше.

Естественное освещение подразделяется на:

- боковое – естественное освещение помещения через световые проемы в наружных стенах (одно- и двухстороннее);

- верхнее – естественное освещение помещения через фонари, световые проемы в стенах в местах перепада высот здания;

- комбинированное – сочетание верхнего и бокового естественного освещения.

Искусственное освещение – освещение помещения только источниками искусственного света.

Искусственное освещение может быть двух систем:

общее освещение, при котором светильники размещают в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение);

комбинированное освещение , когда к общему добавляется местное освещение, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах;

Совмещенное освещение применяется в том случае, когда только естественное освещение не может обеспечить необходимые условия для выполнения производственных операций и дополняется искусственным освещением.

По функциональному назначению искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения.

Рабочее освещение предназначено для обеспечения нормальной работы в производственных помещениях, в местах производства работ, на территории предприятий и обеспечивающее нормируемые осветительные условия (освещенность, качество освещения).

Аварийное освещение предусматривается на случай нарушения питания основного (рабочего) освещения и подключается к источнику питания, не зависимому от источника питания рабочего освещения. Аварийное освещение разделяется на эвакуационное и резервное.

Эвакуационное освещение предназначено для эвакуации людей из производственных помещений при авариях и отключении рабочего освещения.

Эвакуационное освещение подразделяется на: освещение путей эвакуации, эвакуационное освещение зон повышенной опасности и эвакуационное освещение больших площадей (антипаническое освещение).

Освещение путей эвакуации должно обеспечивать 50% нормируемой освещенности через 5 с после нарушения питания рабочего освещения, а 100% нормируемой освещенности - через 10 с. Эвакуационное освещение зон повышенной опасности следует предусматривать для безопасного завершения потенциально опасного процесса или ситуации.

Минимальная освещенность эвакуационного освещения зон повышенной опасности должна составлять 10% нормируемой освещенности для общего рабочего освещения, но не менее 15 лк. Эвакуационное освещение зон повышенной опасности должно обеспечивать 100%-ную нормируемую освещенность через 0,5 с после нарушения питания рабочего освещения.

Эвакуационное освещение больших площадей (антипаническое освещение) предусматривается в больших помещениях площадью более 60 м и направлено на предотвращение паники и обеспечение условий для безопасного подхода к путям эвакуации.

Минимальная продолжительность работы эвакуационного освещения больших площадей должна быть не менее 1 ч. Освещение должно обеспечивать 50% нормируемой освещенности через 5 с после нарушения питания рабочего освещения, а 100% нормируемой освещенности - через 10 с.

Минимальная освещенность эвакуационного освещения больших площадей должна быть не менее 0,5 лк на всей свободной площади пола, за исключением полосы 0,5 м по периметру помещения.

Резервное освещение - это вид аварийного освещения для продолжения работы в случае отключения рабочего освещения. Резервное освещение следует предусматривать, если по условиям технологического процесса или ситуации требуется нормальное продолжение работы при нарушении питания рабочего освещения, а также если связанное с этим нарушение обслуживания оборудования и механизмов может вызвать: гибель, травмирование или отравление людей; взрыв, пожар, длительное нарушение технологического процесса; утечку токсических и радиоактивных веществ в окружающую среду. Освещенность от резервного освещения должна составлять не менее 30% нормируемой освещенности для общего рабочего освещения.

Охранное освещение устраивают вдоль границ территорий, охраняемых в ночное время. Наименьшая освещенность 0,5 лк.

Дежурное освещение - освещение в нерабочее время.

Сигнальное освещение применяется для фиксации границ опасных зон; оно указывает на наличие опасности либо на безопасный путь эвакуации.

Бактерицидное облучение (освещение) создается для обеззараживания воздуха, питьевой воды, продуктов питания. Наибольшей бактерицидной способностью обладают ультрафиолетовые лучи длиной волны 254 – 257 нм.

Эритемное облучение создается в помещениях, где недостаточно солнечного света (северные районы, подземные сооружения). Максимальное эритемное воздействие оказывают электромагнитные лучи с длиной волны 297 нм. Они стимулируют обмен веществ, кровообращение, дыхание и другие функции организма.

План: Введение Классификация искусственного освещения Функциональное назначение искусственного освещения Характеристика типов освещения Искусственное освещение - Преимущества и недостатки. Современные приборы искусственного освещения промышленного производства Заключение Список использованной литературы


Введение Назначение искусственного освещения – создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.




Функциональное назначение искусственного освещения По функциональному назначению искусственное освещение подразделяется на рабочее, дежурное, аварийное. Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта. Дежурное освещение включается во вне рабочее время. Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.


Общее освещение Общее освещение применяют для освещения пролетов цехов. При равномерном освещении светильники освещают рабочие места и все помещение в целом. Оно применяется при симметрично размещенном оборудовании. Равномерное освещение достигается симметричным размещением светильников одинакового типа и электроламп одинаковой мощности, подвешенных по всему цеху на одной высоте и расстоянии. Общее освещение применяют для освещения пролетов цехов. При равномерном освещении светильники освещают рабочие места и все помещение в целом. Оно применяется при симметрично размещенном оборудовании. Равномерное освещение достигается симметричным размещением светильников одинакового типа и электроламп одинаковой мощности, подвешенных по всему цеху на одной высоте и расстоянии.




Общее освещение Преимуществом общего освещения является равномерное распределение яркости по всему помещению и наименьшие затраты на устройство. Недостаток этого освещения заключается в отдаленности освещения от рабочих мест и невозможности обеспечить необходимый уровень освещенности рабочих поверхностей и управления световым потоком.


Местное освещение Местное освещение применяют в качестве дополнительного при выполнении точных работ, на пультах управления, на станках, при работах, связанных с ремонтом оборудования и нагревательных устройств. Следует избегать применения только местного освещения. Система местного освещения позволяет управлять световым потоком. Правильное сочетание местного и общего освещения обеспечивает безопасность работ и повышает производительность труда. Местное освещение применяют в качестве дополнительного при выполнении точных работ, на пультах управления, на станках, при работах, связанных с ремонтом оборудования и нагревательных устройств. Следует избегать применения только местного освещения. Система местного освещения позволяет управлять световым потоком. Правильное сочетание местного и общего освещения обеспечивает безопасность работ и повышает производительность труда.


Комбинированное освещение Общее освещение + местное = комбинированное. При устройстве комбинированного освещения освещенность на рабочей поверхности от светильника общего освещения должна составлять не менее 10% от норм освещенности при комбинированном освещении Общее освещение + местное = комбинированное. При устройстве комбинированного освещения освещенность на рабочей поверхности от светильника общего освещения должна составлять не менее 10% от норм освещенности при комбинированном освещении


Искусственное освещение производственных цехов. Преимущества и недостатки. В осветительных установках различных цехов применяют лампы накаливания и газоразрядные лампы (люминесцентные лампы и ртутные лампы высокого давления с исправленной цветностью типа ДРЛ).


Лампа накаливания Электротехнической промышленностью изготовляются лампы накаливания общего назначения мощностью от 15 до 1500 вт на номинальное напряжение 127 и 220 в. Для местного освещения выпускаются лампы накаливания на номинальное напряжение 12 и 36 в мощностью до 50 вт. Лампа накаливания электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. Электротехнической промышленностью изготовляются лампы накаливания общего назначения мощностью от 15 до 1500 вт на номинальное напряжение 127 и 220 в. Для местного освещения выпускаются лампы накаливания на номинальное напряжение 12 и 36 в мощностью до 50 вт. Лампа накаливания электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе.


Промышленность выпускает различные типы ламп накаливания: вакуумные, газонаполненные (наполнитель смесь аргона и азота), биспиральные, с криптоновым наполнением. Конструкция лампы накала Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя. Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.


Преимущества и недостатки ламп накаливания Преимущества: -малая стоимость -небольшие размеры -ненужность пускорегулирующей аппаратуры -при включении они зажигаются практически мгновенно -отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации -возможность работы как на постоянном токе (любой полярности), так и на переменном -возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт) -отсутствие мерцания и гудения при работе на переменном токе -непрерывный спектр излучения -устойчивость к электромагнитному импульсу -возможность использования регуляторов яркости -нормальная работа при низкой температуре окружающей среды Преимущества: -малая стоимость -небольшие размеры -ненужность пускорегулирующей аппаратуры -при включении они зажигаются практически мгновенно -отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации -возможность работы как на постоянном токе (любой полярности), так и на переменном -возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт) -отсутствие мерцания и гудения при работе на переменном токе -непрерывный спектр излучения -устойчивость к электромагнитному импульсу -возможность использования регуляторов яркости -нормальная работа при низкой температуре окружающей среды Недостатки: -низкая световая отдача -относительно малый срок службы - 95% производимой ими энергии преобразуется в тепло и только 5 % - в свет -цветовая температура лежит только в пределах K, что придаёт свету желтоватый оттенок -лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт 145°C, 75 Вт 250°C, 100 Вт 290°C, 200 Вт 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут. -световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4% Недостатки: -низкая световая отдача -относительно малый срок службы - 95% производимой ими энергии преобразуется в тепло и только 5 % - в свет -цветовая температура лежит только в пределах K, что придаёт свету желтоватый оттенок -лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт 145°C, 75 Вт 250°C, 100 Вт 290°C, 200 Вт 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут. -световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4%


Газоразрядные лампы В настоящее время выпускаются пять типов люминесцентных ламп различной цветности лампы дневного света (ЛД), холодного белого света (ЛХБ), белого света (ЛБ), теплого белого света (ЛТБ) и лампы с исправленной светоотдачей (ЛДЦ). Мощность выпускаемых люминесцентных ламп от 8 до 80 вт.


Люминесцентные лампы Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора. Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.


Преимущества и недостатки люминесцентных ламп Преимущества: этo эффективный cпocoб пpeoбpазoвания энepгии; в cлeдcтвиe бoльшoй излучающей пoвepxнocти создаваемый люминесцентными лампами cвeт не столь яркий, как у "тoчeчныx" итoчникoв cвeта (лампы накаливания, галoгeнныe и газоразpядныe лампы выcoкoгo давления); по энepгeтичecкoй эффeктивнocти люминecцeнтныe лампы являются идеальными для ocвeщeния бoльшиx oткpытыx пoмeщeний (oфиcы, кoммepчecкиe, пpoмышлeнныe и oбщecтвeнныe здания). Свет ламп может быть белым, тёплых и холодных цветов, а также цвета, близкого к естественному дневному свечению. Недостатки: все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. Срок службы: достигает часов, что в раз больше по сравнению с лампами накаливания.


Лампа дневного света Одна из разновидностей люминесцентных ламп с голубоватым цветом свечения. Выделяют 2 типа таких ламп ЛДЦ (дневного света, с правильной цветопередачей) и ЛД (дневного света). Лампы ЛД не обеспечивают правильной передачи цвета освещаемых объектов; используются для целей общего освещения, особенно в южных районах. Лампы ЛДЦ служат для освещения объектов, для которых важно точное воспроизведение цветовых оттенков, преимущественно в синей и голубой областях спектра. Их световая отдача на 1015% ниже, чем у ламп ЛД. Такие лампы применяют для освещения производственных помещений. Одна из разновидностей люминесцентных ламп с голубоватым цветом свечения. Выделяют 2 типа таких ламп ЛДЦ (дневного света, с правильной цветопередачей) и ЛД (дневного света). Лампы ЛД не обеспечивают правильной передачи цвета освещаемых объектов; используются для целей общего освещения, особенно в южных районах. Лампы ЛДЦ служат для освещения объектов, для которых важно точное воспроизведение цветовых оттенков, преимущественно в синей и голубой областях спектра. Их световая отдача на 1015% ниже, чем у ламп ЛД. Такие лампы применяют для освещения производственных помещений.


Разрядные лампы высокого давления Для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи, применяются разрядные лампы высокого давления типа ДРЛ. ДРЛ (Дуговая Ртутная Люминофорная) - принятое в отечественной светотехнике обозначение РЛВД, в которых для исправления цветности светового потока, направленного на улучшение цветопередачи, используется излучение люминофора, нанесённого на внутреннюю поверхность колбы.


Ртутная лампа высокого давления. Четырёхэлектродная лампа ДРЛ состоит из: внешней стеклянной колбы (1), снабжённой резьбовым цоколем (2). На ножке лампы смонтирована установленная на геометрической оси внешней колбы кварцевая горелка (разрядная трубка) (3), наполненная аргоном с добавкой ртути. Четырёхэлектродные лампы имеют основные электроды (4) и расположенные рядом с ними вспомогательные(зажигающие) электроды (5). Каждый зажигающий электрод соединён с находящимся в противоположном конце разрядной трубки основным электродом через токоограничвающее сопротивление (6). Вспомогательные электроды облегчают зажигание лампы и делают её работу в период пуска более стабильной. В последнее время ряд зарубежных фирм изготавливает трёхэлектродныелампы ДРЛ, оснащённые только одним зажигающим электродом. Эта конструкция отличается только большей технологичностью в производстве, не имея никаких иных преимуществ перед четырёхэлектродными. Четырёхэлектродная лампа ДРЛ состоит из: внешней стеклянной колбы (1), снабжённой резьбовым цоколем (2). На ножке лампы смонтирована установленная на геометрической оси внешней колбы кварцевая горелка (разрядная трубка) (3), наполненная аргоном с добавкой ртути. Четырёхэлектродные лампы имеют основные электроды (4) и расположенные рядом с ними вспомогательные(зажигающие) электроды (5). Каждый зажигающий электрод соединён с находящимся в противоположном конце разрядной трубки основным электродом через токоограничвающее сопротивление (6). Вспомогательные электроды облегчают зажигание лампы и делают её работу в период пуска более стабильной. В последнее время ряд зарубежных фирм изготавливает трёхэлектродныелампы ДРЛ, оснащённые только одним зажигающим электродом. Эта конструкция отличается только большей технологичностью в производстве, не имея никаких иных преимуществ перед четырёхэлектродными.


Преимущества и недостатки ДРЛ Преимущества даёт яркий свет, близкий к белому. из тугоплавкого и химически стойкого прозрачного материала Недостатки При уменьшении напряжения питания менее 80% номинального лампа может не зажечься, а горящая - погаснуть. чем холоднее в цехе, тем дольше будет разгораться лампа. При горении лампа сильно нагревается Перед повторным зажиганием лампа должна остыть эти лампы постепенно вытесняются НЛВД (Натриевые лампы высокого давления)


В зависимости от распределения светового потока в пространстве светильники распределяются на следующие группы, % излучения светового потока: Светильники прямого света - 90% в нижнюю полусферу Светильники преимущественно прямого света % в нижнюю полусферу Светильники рассеянного света % в каждую полусферу Светильники преимущественно отраженного света % в верхнюю полусферу Светильники отраженного света - Не менее 90% в верхнюю полусферу В зависимости от распределения светового потока в пространстве светильники распределяются на следующие группы, % излучения светового потока: Светильники прямого света - 90% в нижнюю полусферу Светильники преимущественно прямого света % в нижнюю полусферу Светильники рассеянного света % в каждую полусферу Светильники преимущественно отраженного света % в верхнюю полусферу Светильники отраженного света - Не менее 90% в верхнюю полусферу


Современные приборы искусственного освещения промышленного производства Светильники серии ЛСП44 для влажных и запыленных помещений - Промышленные светильники для помещений с высокими потолками, светильники для цехов серии РСП05 так же являются востребованными на рынке светотехники и пользуются устойчивым спросом. В настоящее время они выпускаются под разные типы ламп, и в большом диапазоне мощности.


Немного о здоровье Первый самый важный фактор, на который влияет освещение - это зрение. Некоторые лампы содержат вредные пульсации в спектре излучения, поэтому оказывают отрицательное воздействие на ваши глаза: они начинают слезиться или, наоборот, сохнуть, появляются неприятные ощущения, краснота, а иногда подобное освещение даже способствует ухудшению зрения. Свет, который излучают ваши лампы, может быть не только пульсирующим, но и очень тусклым, что тоже вызывает риск для ваших глаз. Слишком тусклое освещение портит зрение и заставляет вас засыпать на ходу, слишком яркое освещение утомляет (распространенный симптом – головная боль из-за перенапряжения глазных мышц). Оптимальный вариант – умеренно- интенсивное освещение, при котором вам все прекрасно видно, но глазам все еще комфортно. Для достижения такого эффекта можно воспользоваться несложным приемом – сочетать общий и местный источник света. Общий свет должен быть рассеянным, ненавязчивым, местный свет должен быть на 2-3 порядка интенсивнее общего. Очень желательно, чтобы местный свет был регулируемым и направленным. Также различные лампы и исходящее от них излучение влияют на вашу трудоспособность, утомляемость.


Заключение Искусственное освещение имеет огромное значение в «рабочей жизни» работников производственных помещений. Освещение должно создаваться таким образом чтобы не причинять никакого вреда здоровью работников и полностью удовлетворять требованиям санитарных норм и правил. В последние годы выпускаются все более мощные и менее вредные современные источники искусственного света. И охото, чтобы все больше руководителей производств приобретали новое световое оборудование и придерживались установленных норм освещенности.


Список использованной литературы: Безопасность жизнедеятельности. Под ред. Белова С.В. Высшая школа Кнорринг Г.М., Фадин И.М.,Сидоров В.Н. Справочная книга для проектирования электрического освещения. -С-Пб.: Энергоатомиздат, 2002 Интернет

По конструктивным особенностям естественное освещение подразделяется на боковое, верхнее и комбинированное. По конструктивному исполнению искусственное освещение может быть двух видов – общее и комбинированное.

Общее освещение подразделяется на общее равномерное (распределение светового потока без учета расположения оборудования) и общее локализованное (распределение светового потока с учетом расположения оборудования).

По функциональному назначению искусственное освещение подразделяется на следующие виды: рабочее, аварийное, специальное.

Рабочее освещение обязательно во всех помещениях и освещаемых территориях для обеспечения нормальной работы, прохода людей и движения транспорта.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

Специальное освещение подразделяется на следующие виды: охранное, дежурное, бактерицидное.

При освещении производственных помещений использовано естественное освещение, создаваемое светом неба, искусственное, осуществляемое электрическими лампами, и совмещенное, при котором естественное освещение дополняется искусственным.

Естественное освещение используется в дневное время суток. Оно обеспе­чивает хорошую освещенность, равномерность; вследствие высокой диффузности (рассеивания) благоприятно действует на зре­ние и экономично. Помимо этого солнечный свет оказывает биологи­чески оздоровляющее и тонизирующее воздействие на человека.

Естественное освещение помещений осуществляется через свето­вые проемы и может быть выполнено в виде бокового, верхнего или ком­бинированного.

Боковое - осуществляется через окна в наружных стенах здания;

Верхнее -через световые фонари, располагаемые в перекрытиях и имеющие различные формы и размеры;

Комбинированное - через окна и световые фо­нари.

Искусственное освещение. В темное время суток, а также при недостаточном естественном освещении необходимо применять искусственное освещение как в по­мещениях, так и на открытых площадках, проездах и т. п. В связи с этим качеству искусственного освещения придают серьезное значе­ние.



По конструктивному исполнению искусственное освещение может быть двух систем – общее и комбинированное. Рабочее освещение спроектировано общим и комбинированным, когда к общему добавляют местное освещение. Общее освещение в свою очередь обеспечивает равномерный, без учета расположения рабочих мест, и создает большую освещенность на рабочих местах и меньшую в проходах.

По функциональному назначению искусственное освещение подразделяют на следующие виды: рабочее, аварийное, эвакуационное, охранное, дежурное.

На ка­чество освещения поме­щения оказывает влияние световой поток лампы, а также тип и цвет светильника, цвет окраски помещения и оборудования, их со­стояние (свежесть окраски и запыленность).

В осветительных установках предприятия приме­няют лампы накаливания и газоразрядные источники света. Основные характери­стики ламп: номинальное напряжение, электрическая мощность, световой поток, световая отдача и срок службы.

Аварийное освещение устраивается, когда оно необ­ходимо для продолжения работы или для эвакуации людей из помеще­ния при аварийном отключении ра­бочего освещения. Аварийное осве­щение должно иметь постоянно дей­ствую­щий источник питания и авто­матически включаться при аварии рабочего осве­щения.



Таблица 4.2. Разделение участков СЦ по нормативной характеристике зрительной работы

Наименование участка Разряд и подразряд зрительной работы Освещенность***, лк
при системе комбинированного освещения при системе общего освещения
всего в том числе от общего
Посты мойки и уборки автомобилей - -
Посты ТО, Д и ремонта 400**
Агрегатный, моторный, электротехнический участки 750**
Кузнечный, жестяницкий, сварочный и медницкий участки
Ремонт аккумулятора
Приготовление электролита - - 300*
Ремонт и монтаж шин
Малярный и краскоприготовительный участки
Столярный и обойный участки 4 а 1 000
Помещение для хранения автомобилей - -
Складские помещения без постоянных рабочих мест - -

* Норма освещенности повышена на 1 ступень с учетом опасности травматизма.

** Обязательно наличие переносных источников искусственного освещения.

*** В случае исполнения системы общего освещения лампами накаливания уровни искусственной освещенности следует снижать по шкале освещенности, руководствуясь примечаний соответствующих норм и правил.

Основные требования к производственному освещению. Основная задача освещения – создание наилучших условий для видения. Эту задачу возможно решить только осветительной системой, отвечающей следующим требованиям:

1. Освещенность на рабочем месте должна соответствовать характеру зрительной работы;

2. Необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в пределах окружающего пространства;

3. На рабочей поверхности должны отсутствовать резкие тени;

4. В поле зрения должна отсутствовать прямая и отраженная блескость;

5. Величина освещенности должна быть постоянной во времени;

6. Следует выбирать оптимальную направленность светового потока;

7. Следует выбирать необходимый спектральный состав света;

8. Все элементы осветительных установок должна быть достаточно долговечными, электробезопасными и не быть причиной возникновения пожара или взрыва;

9. Установка должна быть удобной и простой в эксплуатации.

Искусственное освещение предусматривается в помещениях, в которых испытывается недостаток естественного света, а также для освещения помещения в те часы суток, когда естественная освещенность отсутствует.

По принципу организации искусственное освещение можно разделить на два вида: общее и комбинированное.

Общее освещение предназначено для освещения всего помещения, оно может быть равномерным или локализованным. Общее равномерное освещение создает условия для выполнения работ в любом месте освещаемого пространства. При общем локализованном освещении светильника размещают в соответствии с расположением оборудования, что позволяет создавать повышенную освещенность на рабочих местах.

Комбинированное освещение состоит из общего и местного. Его целесообразно устраивать при работах высокой точности, а также при необходимости создания в процессе работы определенной направленности светового потока. Местное освещение предназначено для освещения только рабочих поверхностей и не создает необходимой освещенности даже на прилегающих к ним участкам. Оно не может быть стационарным и переносным. Применение только местного освещения в производственных помещениях запрещается, так как резкий контраст между ярко освещенными и неосвещенными местами утомляет зрение, замедляет скорость работы и нередко является причиной несчастных случаев.

По функциональному назначению искусственное освещение подразделяется на рабочее, аварийное, эвакуационное и охранное.

Рабочее освещение предусматривается для всех помещений производственных зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта.

Аварийное освещение в помещениях и на местах производства работ необходимо предусматривать, если отключение рабочего освещения и связанное с этим нарушение технологического процесса или работы объектов жизнеобеспечения. Наименьшая освещенность, создаваемая аварийным освещением, должна составлять 5% освещенности, нормируемой для рабочего освещения, но не менее 2 лк внутри зданий и не менее 1 лк для территорий предприятий.

Эвакуационное освещение следует предусматривать в местах, отведенных для прохода людей, в проходах и на лестницах, служащих для эвакуации людей в количестве более 50 человек. Это освещение должно обеспечивать на полу основных проходов (или на земле) и на ступенях лестниц освещенность не менее 0,5 лк в помещениях и 0,2 лк на открытой территории.

Охранное освещение предусматривается вдоль границ территории, охраняемой в ночное время. Охранное освещение должно обеспечивать освещенность не менее 0,5 лк на уровне земли.

Источники искусственного освещения

В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

В лампах накаливания источником света является раскаленная вольфрамовая проволока. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные, газонаполненные, бесспиральные (галогенные).

Общим недостатком ламп накаливания является сравнительно небольшой срок службы (менее 2000 часов) и малая световая отдача (отношение создаваемого лампой светового потока к потребляемой электрической мощности) (8-20 лм/Вт). В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления. Газоразрядные лампы низкого давления, называемые люминесцентными, содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством ртути (30-80 мг) и смесью инертных газов под давлением около 400 Па. На противоположных концах трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03-0,08 МПа) относят дуговые ртутные лампы (ДРЛ). В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основным достоинством газоразрядных ламп является их долговечность (свыше 10000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения, обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача этих ламп колеблется в пределах от 30 до 105 лм/Вт, что в несколько раз превышает светоотдачу ламп накаливания.

Нормирование искусственного освещения

Наименьшая освещенность рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами СНиП 23-05-95 * «Естественное и искусственное освещение».

Характеристика зрительной работы определяется минимальным размером объекта различения, контрастом объекта с фоном и свойствами фона.

Объект различения – рассматриваемый предмет, отдельная его часть или дефект, которые следует контролировать в процессе работы.

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается: светлым при коэффициенте отражения () светового потока поверхностью более 0,4; средне светлым при коэффициенте отражения от 0,2 до 0,4; темным при коэффициенте отражения менее 0,2.

Контраст объекта различения с фоном (К ) определяется отношением абсолютной величины разности яркостей объекта В 0 и фона В ф к наибольшей их этих двух яркостей. Контраст считается большим - при значениях К более 0,5; средним - при значениях К от 0,2 до 0,5; малым - при значениях К менее 0,2.

В соответствии со СНиП 23-05-95 все зрительные работы делятся на 8 разрядов в зависимости от размера объекта различения и условий зрительной работы. Допустимые значения наименьшей освещенности рабочих поверхностей в производственных помещениях в соответствии со СНиП 23-05-95 приведены в приложении 1.

Кроме цветности источников света и цветовой отделки интерьера, влияющих на субъективную оценку освещения, важным параметром, характеризующим качество освещения, является коэффициент пульсации освещенности К п :

где Е макс – максимальное значение пульсирующей освещенности на рабочей поверхности;

Е мин – минимальное значение пульсирующей освещенности;

Е ср – среднее значение освещенности.

Пульсации освещенности на рабочей поверхности, не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект – кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте f Всп =f Ввращ , медленно вращающимся в обратную сторону при f Всп >f Ввращ , медленно вращающимся в ту же сторону при f Всп <f Ввращ , где f Всп и f Ввращ – соответственно частоты вспышек и вращения диска. Пульсации освещенности на вращающихся объектах могут вызывать видимость их неподвижности, что в свою очередь, может явиться причиной травматизма.

Значение К п меняется от нескольких процентов (для ламп накаливания) до нескольких десятков процентов (для люминесцентных ламп). Малое значение К п для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока F лн ламп в момент перехода мгновенного значения переменного напряжения сети через 0 (см. рисунок 1а). В тоже время газоразрядные лампы обладают малой инерцией и меняют свой световой поток F лл почти пропорционально амплитуде сетевого напряжения (см. рисунок 1а).

Рисунок 1а

Рисунок 1б.

Для уменьшения коэффициента пульсации освещенности К п люминесцентные лампы включают в разные фазы трехфазной электрической сети. Это хорошо поясняет нижняя кривая на рисунке 1б, где показан характер изменения во времени светового потока (и связанной с ним освещенности), создаваемого тремя люминесцентными лампами 3F лл , включенными в фазу А и в три различные фазы сети. В последнем случае, за счет сдвига фаз на 1/3 периода провалы в световом потоке каждой из ламп компенсируются световыми потоками двух других ламп, так что пульсации суммарного светового потока существенно уменьшаются. При этом среднее значение освещенности, создаваемой лампами, остается неизменным и не зависит от способа их включения.

В соответствии со СНиП 23-05-95 * коэффициент пульсации освещенности К п нормируется в зависимости от разряда зрительных работ в сочетании с показателем ослепленности Р :

,

где s – коэффициент ослепленности, определяемый как:

,

где B пор – пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости;

(B пор )S –то же при наличии в поле зрения блеского (яркого) источника света.

На освещенность рабочих поверхностей в производственном помещении влияют отражение и поглощение света стенами, потолком и другими поверхностями, расстояние от светильника до рабочей поверхности, состояние излучающей поверхности светильника, наличие рассеивателя света и т.д. Вследствие этого полезно используется лишь часть светового потока, излучаемого источником света.

Коэффициент использования осветительной установки

Расчет искусственного освещения предусматривает: выбор типа источника света, системы освещения и, светильника, проведение светотехнических расчетов, распределение светильников и определение потребляемой системой освещения мощности. Величина, характеризующая эффективность использования источников света, называется – коэффициентом использования светового потока или коэффициентом использования осветительной установки () и определяется как отношение фактического светового потока (F фак ) к суммарному световому потоку (F амп ) используемых источников света, определенному по их номинальной мощности в соответствии с нормативной документацией:

,

Значение фактического светового потока F факт можно определить по результатам измерений в помещении средней освещенности Е ср по формуле:

,

где S – площадь помещения, м 2 .

При проектировании освещения для оценки светового потока F факт используется формула:

,

где Е – нормируемая освещенность, лм;

K з – коэффициент запаса, учитывающий старение ламп, запыление и загрязнение светильников (обычно K з – 1,3 для ламп накаливания и 1,5 для люминесцентных ламп);

Z – коэффициент неравномерности освещения (обычно Z = 1,1-1,2).

Отражающие свойства поверхностей помещения можно учесть с помощью коэффициента отражения светового потока . В случае равномерного диффузного отражения, когда отраженный световой поток рассеивается с одинаковой яркостью во всех направлениях, яркость участка равномерно диффузно отражающей поверхности равна:

,

где Е – освещенность поверхности.

Измерить освещенность, создаваемую различными источниками света и сравнить с нормируемыми значениями. По измеренным значениям освещенности определить коэффициент использования осветительной установки. Измерить и сравнить коэффициенты пульсаций освещенности, создаваемой различными источниками света, оценить зависимость коэффициента пульсаций освещенность от способа подключения ламп к фазам трехфазной сети.

Описание лабораторной установки

Лабораторная установка состоит из макета производственного помещения, оборудованного различными источниками искусственного освещения, и люксметра-пульсметра для измерения значений освещенности и коэффициента ее пульсаций. Макет и люксметр-пульсметр устанавливают на стол лабораторный.

Внешний вид макета представлен на рисунке 2.

Макет имеет каркас 1 из алюминиевого профиля, пол 2, потолок 3, боковые стенки являются съемными и могут устанавливаться любой из двух сторон внутрь макета помещения, фиксируясь в проемах каркаса с помощью магнитных защелок. Одна сторона стенок окрашена в светлые тона, другая – в темные тона, при этом нижняя окрашенная половина стенки темнее верхней.

Передняя стенка 5 жестко вмонтирована в каркас и выполнена из тонированного прозрачного стекла. В передней нижней части каркаса 1 предусмотрено окно для установки измерительной головки 6 люксметра-пульсметра 7 внутрь каркаса.

На полу 2 размещен вентилятор 8 для наблюдения стробоскопического эффекта и охлаждения ламп в процессе работы.

На потолке 3 размещены 7 патронов, в которых установлены две лампы накаливания 9, три люминесцентные лампы 10 типа КЛ9, галогенная лампа 11 и люминесцентная лампа 12 типа СКЛЭН с высокочастотным преобразователем.

Вертикальная проекция ламп отмечена на полу 2 цифрами, соответствующими номерами ламп на лицевой панели макета.

Включение электропитания установки производится автоматом защиты, находящимся на задней панели каркаса, и регистрируется сигнальной лампой, расположенной на передней панели каркаса.

На передней панели каркаса (рисунок 3) расположены органы управления и контроля, в том числе:

– лампа индикации включения напряжения;

– переключатель для включения вентилятора;

– переключатели (1-7) для включения ламп.

Рисунок 3.

Электропитание ламп накаливания и люминесцентных ламп осуществляется от разных фаз. Схема позволяет включать отдельно каждую лампу с помощью соответствующих переключателей, расположенных на передней панели каркаса На задней панели каркаса расположен автомат защиты сети и сдвоенная розетка с напряжением 220 В для подключения измерительных приборов.

Люксметр-пульсметр состоит из блока обработки информации 1 (рисунок 4) на лицевой панели которого расположен жидкокристаллический индикатор, кнопки питания «ВКЛ/ВЫКЛ », кнопка управления «HOLD », кнопка индикатора «Подсветка », разъем типа DB -9 . На задней стенке блока обработки сигналов расположена крышка батарейного отсека. Фотоприемный элемент с корригирующим фильтрами, формирующими спектральные характеристики, располагаются в фотометрической головке 2 (рисунок 4). При включенном питании прибор работает как люксметр-пульсметр (ТКА-ПКМ) и позволяет измерять освещенность в

диапазоне от10 до 200000 лк и коэффициент пульсации в диапазоне от 1 до 100%.

Рисунок 4.

Для измерения характеристик излучения необходимо расположить фотометрическую головку прибора в плоскости измеряемого объекта.

Для проведения измерений прибором «ТКА-ПКМ» необходимо включить его кнопкой «ВКЛ/ВЫКЛ ». На экране после включения появится надпись фирмы производителя и название прибора. В ходе измерения в правом поле строки загорается символ «Батарейка », информирующий о емкости батареи питания.

Для правильного обнуления прибора произвести затемнение датчика прибора и нажать кнопку «HOLD ». Процесс обнуления сопровождается надписью на жидкокристаллическом индикаторе «ПОДОЖДИТЕ, ИДЕТ ИЗМЕРЕНИЕ ».

Засветка измерительной части во время обнуления приводит к неправильным измерениям впоследствии!

После пропадания предупреждающей надписи прибор переходит в основной режим измерений. Первая строка выводит текущую освещенность в лк (клк) «Е= », во второй строке отображается значение коэффициента пульсации светового потока в % «К п = ».

В случае измерения освещенности, необходимо расположить фотометрическую головку параллельно плоскости измеряемого объекта (при этом на окно фотоприемника не должна падать тень от оператора, производящего измерения, а также посторонних предметов). Подождать 3 секунды и считать с цифрового индикатора измеренное значение. При увеличении сигнала, создаваемого источником светового потока, в строке Е происходит автоматический переход численного значения освещенности в клк. При выходе за пределы измерений освещенности появится надпись «ОСВЕЩЕНИЕ ИЗБЫТОЧНО ».

Для запоминания измеренного показания на индикаторе прибора необходимо кратковременно нажать кнопку «HOLD ». Для продолжения измерений еще раз нажать кнопку «HOLD ».

Если во время работы прибора появится надпись: «ЗАМЕНИТЕ БАТАРЕЙКУ », то необходимо произвести замену элемента питания.

По окончании измерений, прибор выключается, нажатием на кнопку «ВКЛ/ВЫКЛ ».

Требования безопасности при выполнении лабораторной работы

К работе допускаются студенты, ознакомленные с устройством лабораторной установки, принципом действия и мерами безопасности при проведении лабораторной работы.

Для предотвращения перегрева установки при длительной работе ламп необходимо включить вентилятор.

После проведения лабораторной работы отключить электропитание стенда и люксметра-пульсметра.

Порядок проведения лабораторной работы

    Установить стенки макета производственного помещения таким образом, чтобы стороны, окрашенные в темные тона, были обращены внутрь помещения.

Включить установку с помощью автомата защиты, находящегося на задней панели каркаса.

Включить поочередно лампы (выбор ламп производится по заданию преподавателя).

Произвести измерение освещенности и коэффициента пульсации для каждой включенной лампы с помощью люксметра-пульсометра не менее чем в пяти точках макета производственного помещения (в центре и углах пола), определить среднее значение освещенности Е ср .

Сравнить полученные в результате измерений значения освещенности и коэффициента пульсации с допустимыми значениями (разряд зрительных работ принять по указанию преподавателя)

    Установить стенки макета производственного помещения таким образом, чтобы стороны, окрашенные в светлые тона, были обращены внутрь помещения.

Произвести измерение освещенности не менее чем в пяти точках макета производственного помещения, определить среднее значение освещенности.

Сравнить полученные в результате измерений значения освещенности и коэффициента пульсации с допустимыми значениями (разряд зрительных работ принять по указанию преподавателя)

    По результатам измерений освещенности для варианта с темной и светлой окраской стен вычислить значение фактического светового потока F факт по формуле:

,

где Е ср –среднее значение освещенности, лк;

S – площадь макета помещения, м 2 .

Вычислить коэффициент использования осветительной установки для варианта с темной и светлой окраской стен по формуле:

.

Суммарный световой поток F ламп выбрать по номинальной мощности для каждого типа ламп по таблице 1.

Таблица 1 Технические характеристики ламп

* После минимальной продолжительности горения (2000 часов)

Сравнить значения коэффициентов использования осветительных установок, полученные для случаев с использованием различных источников света и различной окраски стен.

    С помощью люксметра-пульсометра измерить коэффициенты пульсации освещенности при включении одной люминесцентной лампы, затем – двух и наконец, при включении трех люминесцентных ламп типа КЛ9 (следует учесть, что люминесцентные лампы включены в три различные фазы трехфазной сети, поэтому измерительную головку люксметра-пульсметра необходимо располагать в геометрическом центре системы включенных ламп).

Сравнить измеренные значения коэффициентов пульсации освещенности с допустимыми значениями. Объяснить полученные результаты.

Включить люминесцентную лампу типа КЛ9 в центре установки и вентилятор. Вращая ручку «Частота», регулирующую скорость вращения лопастей вентилятора, подобрать такую частоту, при которой возникает стробоскопический эффект (лопасти, кажутся неподвижными).

    Выключить стенд. Составить отчет о работе.

Таблица 2 Результаты измерений освещенности и расчеты лабораторной работы (светлая, темная сторона стены)

Тип лампы

№ точки измерения

Освещенность, лк (Е)

Средняя освещенность, лк

Нормативное значение освещенности,

Фактический

световой поток, лм

Коэффициент

использования

Коэффициент

пульсации

Люминесцентная лампа, 9Вт

Люминесцентная лампа, 11Вт

Лампа накаливания общего

назначения

накаливания

галогенная

Таблица 3 Результаты измерения пульсации светового потока

Отчет должен содержать:

    Название и цель работы.

    Порядок проведения работы.

    Описание используемых приборов и оборудования.

    Таблицы результатов измерений.

    Результаты обработки экспериментальных данных с соответствующими расчетами.

    Выводы по каждому пункту порядка проведения работы.

Контрольные вопросы

1. Что такое освещение помещений?

2. Перечислите виды освещения в зависимости то источника света.

3. Что такое световой поток, сила света, освещенность, яркость?

4. Какие бывают системы искусственного освещения?

5. Перечислите виды искусственного освещения по функциональному назначению.

6. Назовите источники искусственного освещения.

7. В чем заключается принцип нормирования параметров световой среды?

8. Что такое коэффициент пульсации светового потока?

9. Каким способом можно уменьшить коэффициент пульсации светового потока?

10. Объясните суть стробоскопического эффекта.

11. Что такое коэффициент использования осветительной установки?

Под светильником понимается комплект лампы (источника света) и осветительной арматуры. Светильник обеспечивает крепление лампы, подсоединение к ней электрического питания, предохранение ее от загрязнения и механического повреждения.

Светильники предназначены для размещения в них ламп в целях повышения санитарно-гигиенических качеств освещения и снижения расхода электроэнергии. Они устраивают слепящее действие источника света, предохраняя глаза работающих от чрезмерной яркости. Это обеспечивается защитным углом светильника.

Светильник классифицируются: по назначению - для общего и местного освещения; по конструктивному исполнению - открытые, защищенные, закрытые, пыленепроницаемые, влагозащищенные, взрывозащищенные (взрывонепроницаемые и повышенной надежности против взрыва); по распределению светового потока (рис.24, а-е) - прямого света, преимущественно прямого света, рассеянного света, отраженного света, преимущественно отраженного света. Такое подразделение основано на отношении светового потока, излучаемого в нижнюю сферу, к полному световому потоку светильника.

В помещениях с высокими отражающими свойствами стен и потолков для освещения целесообразно применять светильники прямого света. В помещениях, стены и потолки которых обладают высокими отражающими свойствами, надлежит устанавливать светильники преимущественно прямого света,направляющие часть светового потока на потолок.

В высоких помещениях рационально применять светильники концентрированного светораспределения. Они значительно увеличивают силу света лампы по оси светильника и направляют основную часть светового потока вниз, непосредственно на рабочие места. В помещениях с большой площадью и небольшой высотой целесообразно использовать светильники более широкого светораспределения.

При выборе типа светильника важнейшим требованием является учет условий среды. В помещениях с нормальной средой к конструкции светильника не предъявляется специальных требований. Это же относится и к помещениям влажным и сырым, но с одним с требованием патрон должен иметь корпус из изоляционных влагостойких материалов. В помещениях особо сырых, с химически активной средой, пожаро- и взрывоопасных конструкция светильника должна отвечать специальным требованиям.

Рис.24 Основные типы осветительных приборов

а)рассеянного света, б)прямого света "Универсал",

в)прямого света "Глубокоизлучатель", г)рассеянного света

"Школьный", д)пыле- и влагонепроницаемый,

е)повышенной надежности против взрыва.

Светильники местного освещения предназначены для освещения места выполнения работы, они укрепляются обычно на шарнирных кронштейнах, обеспечивающих возможность их перемещения и изменения направления светового потока. Поскольку светильники местного освещения располагаются в непосредственной близости от глаз работающего, необходимо, чтобы защитный угол светильника был не менее 30 град, а при расположении светильника не выше уровня глаз работающего - не менее 10 град, что исключает ослепление и правильно освещает рабочее место.

Особую группу осветительных приборов составляют прожекторы, в которых с помощью системы линз и зеркал свет концентрируется узким лучом. Прожекторы широко используются для освещения открытых пространств, карьеров, территорий предприятий, строительных площадок, складов и др.

Перспективным является применение световодов, передающих свет от естественного или искусственного источника на значительное расстояние, что особенно целесообразно во взрыво- и пожароопасных помещениях.

.Классификация искусственного освещения.

Искусственное освещение выполняется двух систем: общее и комбинированное (общее с местным). Для освещения помещений должны предусматриваться газоразрядные лампы (люминесцентные, металлогенные, натриевые, ксеновые), допускается применение ламп накаливания.

Освещение применяется и в лечебных профилактических целях: ультрафиолетовое облучение (кварцевые лампы, эритемные лампы). По назначению искусственное освещение делится на рабочее, аварийное, эвакуационное и специальное.

Рабочее освещение должно предусматриваться для всех помещений и открытых пространств,предназначенных для работы, прохода людей и движения транспорта.

В системе комбинированного освещения общее освещение должно создавать не менее 10 % от нормируемой освещенности. Для местного освещения используются светильники с непросвечивающими отражателями с защитным углом не менее 30 град.

Защитный угол - это угол между горизонталью, на которой лежит центр светильника и прямой, проходящей через центр накала лампы и краем отражателя (рассеивателя).

Аварийное освещение следует предусматривать, если отключение рабочего освещения может вызвать: взрывы, пожар, отравление людей, длительное нарушение технологического процесса, нарушение обслуживания больных в операционных, нарушение режима детских учреждений. Наименьшая освещенность рабочих поверхностей должна быть не менее 5 % от нормируемого рабочего, но не менее 2 лк. внутри зданий и 1 лк для территорий предприятия.

Эвакуационное освещение предусматривается:

а)в местах, опасных для прохода людей;

б)в проходах и на лестницах при числе эвакуирующихся более 50 чел;

в)по основным проходам помещений, в которой работает более 50 чел;

г)в лестничных клетках жилых домов, высотой 6 и более этажей и др. случаях по СНиП.

Эвакуационное освещение обеспечивает наименьшую освещенность на полу проходов: в помещениях - 0,5 лк; на открытых территориях - 0,2 лк.

К специальным видам освещения относятся охранное и дежурное. Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время: освещенность 0,5 лк на уровне земли.

Нормирование и принцип расчета искусственного освещения

Искусственное освещение нормируется согласно СНиП 11-4-79. Освещенность рабочих поверхностей мест работ вне зданий нормируется в зависимости от характера работы по разрядам зрительной работы от IX (точные работы - отношение наименьшего размера объекта различения к расстоянию до глаз не менее 0,005) и до XIII (различение крупных предметов) табл.16 СНиП.

Наружное освещение должно иметь управление, независимо от управления освещением внутри здания. СНиП нормирует и высоту установок наружного освещения для ограничения их слепящего действия. Расчет искусственного освещения сводится к решению следующих вопросов: выбор системы освещения, типа источников света, нормы освещенности, типа светильников, расчета освещенности на рабочих местах, уточнение размещения и числа светильников, определение одиночной мощности ламп.

Виды и вредность промышленной пыли.

К антропогенным источникам загрязнения окружающей среды относятся промышленные пыли.

Многие производственные процессы сопровождаются значительными выделением пыли. Промышленная пыль также оказывает вредное воздействие на организм человека.

Похожие статьи